XiaoHuang's Space
XiaoHuang's Space
XiaoHuang
May the force be with you.
「CF630C」Lucky Numbers
Posted: Dec 11, 2019
Last Modified: Mar 01, 2020
This article was last modified days ago. The content of this post may be outdated!

Portal

Portal1: Codeforces

Portal2: Luogu

Description

The numbers of all offices in the new building of the Tax Office of IT City will have lucky numbers.

Lucky number is a number that consists of digits $7$ and $8$ only. Find the maximum number of offices in the new building of the Tax Office given that a door-plate can hold a number not longer than $n$ digits.

Input

The only line of input contains one integer $n (1 \le n \le 55)$ — the maximum length of a number that a door-plate can hold.

Output

Output one integer — the maximum number of offices, than can have unique lucky numbers not longer than $n$ digits.

Sample Input

2

Sample Output

6

Solution

题目要我们构造$1 \sim n$位由$7, 8$的数的个数。我们先来找一找规律:

位数为$1$时:有$7, 8$,共$2 \times 2 ^ 0 = 2$种;

位数为$2$时:有$77, 78, 87, 88$,共$2 \times 2 ^ 1 = 4$种;

位数为$3$时:有$777, 778, 787, 788, 877, 878, 887, 888$共$2 \times 2 ^ 2 = 8$种;

$\cdots \cdots$

所以,位数是$n$的总个数是$2 \times 2 ^ {n - 1}$;

那么位数为$1 \sim n$的总个数为

$$\begin{aligned} \sum^{n}_{i = 1}{2 \times 2 ^ {i - 1}} & = 2 \times \sum^{n}_{i = 1}{2 ^ {i - 1}} \\\ & = 2 \times (2 ^ {n} - 2) \\\ & = 2 ^ {n + 1} - 2\end{aligned}$$

于是就解决了。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>

using namespace std;

typedef long long LL;
LL n;
inline LL power(LL x, LL y) {//求x的y次方
    LL ret = 1;
    for (LL i = 1; i <= y; i++)
        ret *= x;
    return ret;
}
int main() {
    scanf("%lld", &n);
    printf("%lld\n", power(2, n + 1) - 2);//推出来的公式
    return 0;
}
Article License: CC BY-NC-ND 4.0
Article Author: XiaoHuang
  1. 1. Portal
  2. 2. Description
  3. 3. Input
  4. 4. Output
  5. 5. Sample Input
  6. 6. Sample Output
  7. 7. Solution
  8. 8. Code
Newer Post
「Luogu 3792」由乃与大母神原型和偶像崇拜
Older Post
「Luogu 1349」广义斐波那契数列
Buy me a beer?
-->
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×