Portal
Portal1: Codeforces
Portal2: Luogu
Description
In mathematical terms, the sequence $F_n$ of Fibonacci numbers is defined by the recurrence relation
$$F_1 = 1; F_2 = 1; F_n = F_n - 1 + F_n - 2 (n > 2)$$
DZY
loves Fibonacci numbers very much. Today DZY
gives you an array consisting of $n$ integers: $a1, a2, \cdots , an$. Moreover, there are $m$ queries, each query has one of the two types:
Format of the query “
1 l r
“. In reply to the query, you need to add $F_i - l + 1$ to each element ai, where $l \le i \le r$.Format of the query “
2 l r
“. In reply to the query you should output the value of modulo $1000000009 (10^9 + 9)$.
Help DZY
reply to all the queries.
Input
The first line of the input contains two integers $n$ and $m (1 \le n, m \le 300000)$. The second line contains $n$ integers $a_1, a_2, \cdots , a_n (1 \le ai \le 10^9)$ — initial array $a$ .
Then, $m$ lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality $1 \le l \le r \le n$ holds.
Output
For each query of the second type, print the value of the sum on a single line.
Sample Input
4 4
1 2 3 4
1 1 4
2 1 4
1 2 4
2 1 3
Sample Output
17
12
Sample Explain
After the first query, $a = [2, 3, 5, 7]$.
For the second query, $sum = 2 + 3 + 5 + 7 = 17$.
After the third query, $a = [2, 4, 6, 9]$.
For the fourth query, $sum = 2 + 4 + 6 = 12$.
Description in Chinese
题目让我们求给你一个序列,支持区间加Fibonacci
数列前r - l + 1
项和查询区间和。
Solution
一些约定:把斐波那契数列的前两个数$F_1 = 1, F_2 = 1$换成另两个数,仍满足$F_n = F_{n - 1} + F_{n - 2}(n > 2)$的数列称为广义斐波那契数列。
Fibonacci
数列有一些性质:
性质$1$. $F_n = (\sum^{n - 2}_{i = 1}{F_i}) + F_2(n > 2)$;
证明如下:
首先将前几项Fibonacci
数列展开。
F(1) = 1
F(2) = 1
F(3) = F(1) + F(2)
F(4) = F(2) + F(3) = F(2) + F(1) + F(2)
F(5) = F(3) + F(4) = F(3) + F(2) + F(1) + F(2)
F(6) = F(4) + F(5) = F(4) + F(3) + F(2) + F(1) + F(2)
......
在$F_n = F_{n - 1} + F_{n - 2}$中,我们可以把$F_{n - 1}$按式子展开,可得$F_n = \sum^{n - 3}_{i = 1}{F_i} + F_2 + F_{n - 2}$,即$F_n = (\sum^{n - 2}_{i = 1}{F_i}) + F_2(n > 2)$,跟原式一模一样,故原式正确性得证。
性质$2$. 一个广义斐波那契数列数列$f_i$, 当$f_1 = x, f_2 = y$时,则有$f_n = x \times f_{n - 1} + y \times f_{n - 2}$
证明如下:
这个性质与性质1
类似,证明方法也与性质1
类似,列举几个:
f(1) = x
f(2) = y
f(3) = f(1) + f(2) = x × F(1)
f(4) = f(2) + f(3) = x × F(1) + y × F(2)
f(5) = f(3) + f(4) = x × F(2) + y × F(3)
f(6) = f(4) + f(5) = x × F(3) + y × F(4)
......
把上述规律推广到代数式:
$$\begin{aligned} f_n & = f_{n - 1} + f_{n - 2} \\ & = x \times f_{n - 2} + y \times f_{n - 3} + x \times f_{n - 3} + y \times f_{n - 4} \\ & = x \times (f_{n - 2} + f_{n - 3}) + y \times (f_{n - 3} + f_{n - 4}) \\ & = x \times f_{n - 1} + y \times f_{n - 2} \end{aligned}$$
证毕。
性质$3$. 任意两段不同的广义斐波那契数列段相加(逐项相加),所得的数列任然是广义斐波那契数列。
这个性质易证。
这题我们维护一棵线段树,线段树需要维护$L$至$R$区间的广义斐波那契数列的第一项,第二项与区间的和。
下传标记时,我们可以在左区间加广义斐波那契数列的前两项,在右区间可以求出总和再加上总和就行了,时间复杂$\text{O(n log n)}$。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
const int MAXN = 300005, MAXM = 1200005, mod = 1e9 + 9;
struct node {
int c1, c2, sum;
} tree[MAXM];
int n, m, opt, x, y, a[MAXN], f[MAXN];
inline int add(int x, int y) {//两项相加并取模
int ret = x + y;
if (ret < 0) return ret += mod; else return ret % mod;
}
inline int calc1(int x, int y, int len) {//计算斐波那契
if (len == 1) return x; else
if (len == 2) return y; else return ((LL)x * f[len - 2] + (LL)y * f[len - 1]) % mod;
}
inline int calc2(int x, int y, int len) {//计算总和
if (len == 1) return x; else
if (len == 2) return add(x, y); else return add(calc1(x, y, len + 2), -y);
}
inline void pushup(int rt) {
tree[rt].sum = add(tree[rt << 1].sum, tree[rt << 1 | 1].sum);
}
inline void pushdown(int rt, int l, int r) {//下传标记
if (tree[rt].c1) {
int mid = l + r >> 1;
tree[rt << 1].c1 = add(tree[rt << 1].c1, tree[rt].c1);
tree[rt << 1].c2 = add(tree[rt << 1].c2, tree[rt].c2);
tree[rt << 1].sum = add(tree[rt << 1].sum, calc2(tree[rt].c1, tree[rt].c2, mid - l + 1));
int x = calc1(tree[rt].c1, tree[rt].c2, mid - l + 2), y = calc1(tree[rt].c1, tree[rt].c2, mid - l + 3);
tree[rt << 1 | 1].c1 = add(tree[rt << 1 | 1].c1, x);
tree[rt << 1 | 1].c2 = add(tree[rt << 1 | 1].c2, y);
tree[rt << 1 | 1].sum = add(tree[rt << 1 | 1].sum, calc2(x, y, r - mid));
tree[rt].c1 = 0; tree[rt].c2 = 0;
}
}
inline void update(int rt, int l, int r, int ansl, int ansr) {//线段树区间更新
if (ansl <= l && r <= ansr) {
tree[rt].c1 = add(tree[rt].c1, f[l - ansl + 1]);
tree[rt].c2 = add(tree[rt].c2, f[l - ansl + 2]);
tree[rt].sum = add(tree[rt].sum, calc2(f[l - ansl + 1], f[l - ansl + 2], r - l + 1));
return ;
}
pushdown(rt, l, r);
int mid = l + r >> 1;
if (ansl <= mid) update(rt << 1, l, mid, ansl, ansr);
if (ansr > mid) update(rt << 1 | 1, mid + 1, r, ansl, ansr);
pushup(rt);
}
inline int query(int rt, int l, int r, int ansl, int ansr) {//线段树区间查询
int ret = 0;
if (ansl <= l && r <= ansr) {
ret = tree[rt].sum;
return ret;
}
pushdown(rt, l, r);
int mid = l + r >> 1;
if (ansl <= mid) ret = add(ret, query(rt << 1, l, mid, ansl, ansr));
if (ansr > mid) ret = add(ret, query(rt << 1 | 1, mid + 1, r, ansl, ansr));
return ret;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &x);
a[i] = add(a[i - 1], x);
}
f[1] = 1; f[2] = 1;
for (int i = 3; i <= n + 2; i++)
f[i] = add(f[i - 1], f[i - 2]);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &opt, &x, &y);
if (opt == 1) update(1, 1, n, x, y); else printf("%d\n", add(query(1, 1, n, x, y), a[y] - a[x - 1]));
}
return 0;
}
Article Author: XiaoHuang