XiaoHuang's Space
XiaoHuang's Space
XiaoHuang
May the force be with you.
「数学」三角函数公式以及部分证明
Posted: Dec 15, 2019
Last Modified: Jan 23, 2020
This article was last modified days ago. The content of this post may be outdated!

定义

在$Rt\triangle ABC$中,如下有六个三角函数的定义:

正弦:

$$\sin A = \frac{a}{c}$$

级数表示:$\sin (x)==\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{1+2k}}{(1+2k)!}$

余弦:

$$\cos A = \frac{b}{c}$$

级数表示:$\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k) !}$

正切:

$$\tan A = \frac{a}{b}$$

级数表示:$\tan (x)=i+2 i \sum_{k=1}^{\infty}(-1)^{k} q^{2 k} \color{gray}\textrm{ for } q=e^{i x}$

余切:

$$\cot A = \frac{b}{a}$$

级数表示:$\cot (x)=-i-2 i \sum_{k=1}^{\infty} q^{2 k} \color{gray}\text { for } q=e^{i x}$

正割:

$$\sec A = \frac{c}{b}$$

级数表示:$\sec (x)=-2 \sum_{k=1}^{\infty}(-1)^{k} q^{-1+2 k} \color{gray}\text { for } q=e^{i x}$

余割:

$$\csc A = \frac{c}{a}$$

级数表示:$\csc (x)=-2 i \sum_{k=1}^{\infty} q^{-1+2 k} \color{gray}\text { for } q=e^{i x}$

诱导公式

链接

关系 & 定理 & 公式

倒数关系

$$\cos \alpha \cdot \sec \alpha = 1$$

$$\sin \alpha \cdot \csc \alpha = 1$$

$$\tan \alpha \cdot \cot \alpha = 1$$

平方关系

$$1 + \tan ^ 2 \alpha = \sec ^ 2 \alpha$$

$$1 + \cot ^ 2 \alpha = \csc ^ 2 \alpha$$

$$\sin^2 \alpha + cos ^ 2 \alpha = 1$$

商的关系

$$\frac{\sin \alpha}{\cos \alpha} = \frac{\sec \alpha}{\csc \alpha} = \tan \alpha$$

$$\frac{\cos \alpha}{\sin \alpha} = \frac{\csc \alpha}{\sec \alpha} = \cot \alpha$$

正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R = D$$

$R$ 为三角形外切圆半径,$D$ 为三角形外切圆直径。

证明:

如图在 $\triangle ABC$ 中可得 $\sin A = \frac{h}{b}$ 和 $\sin B = \frac{h}{a}$ 。

$$\therefore h = \sin A \times b, h = \sin B \times a \\\ \therefore \sin A \times b = \sin B \times a \\\ \therefore \frac{\sin A}{a} = \frac{\sin B}{b} \\\ \therefore \frac{a}{\sin A} = \frac{b}{\sin B} \\\ \textrm{同理:} \frac{a}{\sin A} = \frac{c}{\sin C} \\\ \therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

如图, $\triangle CDB$ 中线段 $CD$ 经过圆心,所以 $\angle CBD = 90 ^ \circ$ , $CD = 2R$。

$$\therefore \sin A = \sin D = \frac{CB}{CD} = \frac{a}{2R} \\\ \therefore \frac{a}{\sin A} = 2R \\\ \textrm{同理:} \frac{b}{\sin B} = 2R, \frac{c}{\sin C} = 2R \\\ \therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R = D$$

余弦定理

$$a ^ 2 = b ^ 2 + c ^ 2 - 2bc\cos A, b ^ 2 = a ^ 2 + c ^ 2 - 2ac\cos B, c ^ 2 = a ^ 2 + b ^ 2 - 2ab\cos C \\\ \rm{或} \\\ \cos A = \frac{b ^ 2 + c ^ 2 - a ^ 2}{2bc}, \cos B = \frac{a ^ 2 + c ^ 2 - b ^ 2}{2ac}, \cos C = \frac{a ^ 2 + b ^ 2 - c ^ 2}{2ab}$$

证明:

如图,在 $\triangle ABC$ 中,令$\vec{AB} = \vec{c}, \vec{CB} = \vec{a}, \vec{CA} = \vec{b}$。

$$\therefore \vec{c} = \vec{AB} = \vec{CB} - \vec{CA} = \vec{a} - \vec{b} \\\ \therefore (\vec{c}) ^ 2 = (\vec{a} - \vec{b}) ^ 2 = \vec{a} ^ 2 + \vec{b} ^ 2 - 2 \vec{a} \cdot \vec{b} \\\ \therefore |\vec{c}| ^ 2 = |\vec{a}| ^ 2 + |\vec{b}| ^ 2 - 2 |\vec{a}| \cdot |\vec{b}| \cdot \cos C \\\ \therefore c ^ 2 = a ^ 2 + b ^ 2 - 2ab\cos C \\\ 同理:\cos A = \frac{b ^ 2 + c ^ 2 - a ^ 2}{2bc}, \cos B = \frac{a ^ 2 + c ^ 2 - b ^ 2}{2ac}$$

和角公式

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

差角公式

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

和差化积

$$\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$$

$$\sin \alpha-\sin \beta=2 \sin \left(\frac{\alpha-\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)$$

$$\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$$

$$\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$$

积化和差

$$\cos \alpha \sin \beta=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)]$$

$$\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$$

$$\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]$$

$$\sin \alpha \sin \beta=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)]$$

倍角公式

$$\sin 2 \alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2 \alpha = \cos ^ 2 \alpha - \sin ^ 2 \alpha$$

$$\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan ^ 2 \alpha}$$

$$\cot 2 \alpha=\frac{\cot ^{2} \alpha-1}{2 \cot \alpha}$$

$$\sec 2 \alpha=\frac{\sec ^{2} \alpha}{1-\tan ^{2} \alpha}$$

$$\csc 2 \alpha=\frac{1}{2} \sec \alpha \csc \alpha$$

半角公式

$$\sin \left(\frac{\alpha}{2}\right) = \sqrt{\frac{1-\cos \alpha}{2}}$$

$$\cos \left(\frac{\alpha}{2}\right) = \sqrt{\frac{1+\cos \alpha}{2}}$$

$$\tan \left(\frac{\alpha}{2}\right) = \csc \alpha-\cot \alpha$$

$$\cot \left(\frac{\alpha}{2}\right) = \csc \alpha+\cot \alpha$$

$$\sec \left(\frac{\alpha}{2}\right) = \sqrt{\frac{2 \sec \alpha}{\sec \alpha+1}}$$

$$\csc \left(\frac{\alpha}{2}\right) = \sqrt{\frac{2 \sec \alpha}{\sec \alpha-1}}$$

Attachment

常用三角函数值对照表:

角$\alpha$ 弧度 $\sin$值 $\cos$值 $\tan$值
$0^\circ$ $0$ $0$ $1$ $0$
$15^\circ$ $\frac{\pi}{12}$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $2 - \sqrt{3}$
$22.5^\circ$ $\frac{\pi}{8}$ $\frac{\sqrt{2 - \sqrt{2}}}{2}$ $\frac{\sqrt{2 + \sqrt{2}}}{2}$ $-1 + \sqrt{2}$
$30^\circ$ $\frac{\pi}{6}$ $\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$
$45^\circ$ $\frac{\pi}{4}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ $1$
$60^\circ$ $\frac{\pi}{3}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$
$75^\circ$ $\frac{5\pi}{12}$ $\frac{\sqrt{6} + \sqrt{2}}{4}$ $\frac{\sqrt{6} - \sqrt{2}}{4}$ $2 + \sqrt{3}$
$90^\circ$ $\frac{\pi}{2}$ $1$ $0$ $\rm{无}$
$120^\circ$ $\frac{2\pi}{3}$ $\frac{\sqrt{3}}{2}$ $-\frac{1}{2}$ $-\sqrt{3}$
$135^\circ$ $\frac{3\pi}{4}$ $\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{2}}{2}$ $-1$
$150^\circ$ $\frac{5\pi}{6}$ $\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{3}$
$180^\circ$ $\pi$ $0$ $-1$ $0$
$270^\circ$ $\frac{3\pi}{2}$ $-1$ $0$ $\rm{无}$
$360^\circ$ $2\pi$ $0$ $1$ $0$
Article License: CC BY-NC-ND 4.0
Article Author: XiaoHuang
  1. 1. 定义
    1. 1.1. 正弦:
    2. 1.2. 余弦:
    3. 1.3. 正切:
    4. 1.4. 余切:
    5. 1.5. 正割:
    6. 1.6. 余割:
    7. 1.7. 诱导公式
  2. 2. 关系 & 定理 & 公式
    1. 2.1. 倒数关系
    2. 2.2. 平方关系
    3. 2.3. 商的关系
    4. 2.4. 正弦定理
    5. 2.5. 余弦定理
    6. 2.6. 和角公式
    7. 2.7. 差角公式
    8. 2.8. 和差化积
    9. 2.9. 积化和差
    10. 2.10. 倍角公式
    11. 2.11. 半角公式
  3. 3. Attachment
Newer Post
「数学」Menelaus定理与Ceva定理
Older Post
「AT1175」ニコニコ文字列
Buy me a beer?
-->
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×